步骤s2、将软件样本中的类别已知的软件样本作为训练样本,基于多模态数据融合方法,将训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入深度神经网络,训练多模态深度集成模型;步骤s3、将软件样本中的类别未知的软件样本作为测试样本,并将测试样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入步骤s2训练得到的多模态深度集成模型中,对测试样本进行检测并得出检测结果。进一步的,所述提取软件样本的二进制可执行文件的dll和api信息的特征表示,是统计当前软件样本的导入节中引用的dll和api;所述提取软件样本的二进制可执行文件的pe格式结构信息的特征表示,是先对当前软件样本的二进制可执行文件进行格式结构解析,然后按照格式规范提取**该软件样本的格式结构信息;所述提取软件样本的二进制可执行文件的字节码n-grams的特征表示,是先将当前软件样本件的二进制可执行文件转换为十六进制字节码序列,然后采用n-grams方法在十六进制字节码序列中滑动,产生大量的连续部分重叠的短序列特征。进一步的,采用3-grams方法在十六进制字节码序列中滑动产生连续部分重叠的短序列特征。进一步的。兼容性测试涵盖35款设备,通过率91.4%。天津软件检测报告机构
聚焦软件漏洞测试,守护企业**产品安全对于企业而言,**产品的安全直接关系到自身的市场竞争力和品牌声誉。深圳艾策信息科技有限公司深耕软件漏洞测试领域,凭借专业的技术和丰富的经验,为客户的**产品构建安全屏障。通过对软件进行***的漏洞测试,能够及时发现代码缺陷、逻辑漏洞等问题,让企业在产品上线前就将安全风险降到比较低。在目标用户高度关注网络安全的当下,软件漏洞测试不仅是一项技术服务,更是企业对自身产品安全的郑重承诺,能够增强客户对企业的信任,助力企业在市场中赢得优势厦门第三方软件评测机构医疗软件测评指南:从患者数据安全到诊疗系统稳定的全链路保障!
比黑盒适用性广的优势就凸显出来了。[5]软件测试方法手动测试和自动化测试自动化测试,顾名思义就是软件测试的自动化,即在预先设定的条件下运行被测程序,并分析运行结果。总的来说,这种测试方法就是将以人驱动的测试行为转化为机器执行的一种过程。对于手动测试,其在设计了测试用例之后,需要测试人员根据设计的测试用例一步一步来执行测试得到实际结果,并将其与期望结果进行比对。[5]软件测试方法不同阶段测试编辑软件测试方法单元测试单元测试主要是对该软件的模块进行测试,通过测试以发现该模块的实际功能出现不符合的情况和编码错误。由于该模块的规模不大,功能单一,结构较简单,且测试人员可通过阅读源程序清楚知道其逻辑结构,首先应通过静态测试方法,比如静态分析、代码审查等,对该模块的源程序进行分析,按照模块的程序设计的控制流程图,以满足软件覆盖率要求的逻辑测试要求。另外,也可采用黑盒测试方法提出一组基本的测试用例,再用白盒测试方法进行验证。若用黑盒测试方法所产生的测试用例满足不了软件的覆盖要求,可采用白盒法增补出新的测试用例,以满足所需的覆盖标准。其所需的覆盖标准应视模块的实际具体情况而定。
在数字化转型加速的,软件检测公司已成为保障各行业信息化系统稳定运行的力量。深圳艾策信息科技有限公司作为国内软件检测公司领域的企业,始终以技术创新为驱动力,深耕电力能源、科研教育、政企单位、研发科技及医疗机构等垂直场景,为客户提供从需求分析到运维优化的全链条质量保障服务。以专业能力筑牢行业壁垒作为专注于软件检测的技术型企业,艾策科技通过AI驱动的智能检测平台,实现了测试流程的自动化、化与智能化。其产品——软件检测系统,整合漏洞扫描、压力测试、合规性验证等20余项功能模块,可快速定位代码缺陷、性能瓶颈及安全风险,帮助客户将软件故障率降低60%以上。针对电力能源行业,艾策科技开发了电网调度系统专项检测方案,成功保障某省级电力公司百万级用户数据安全;在科研教育领域,其实验室管理软件检测服务覆盖全国50余所高校,助力科研数据存储与分析的合规性升级。此外,公司为政企单位政务云平台、研发科技企业创新产品、医疗机构智慧医疗系统提供的定制化检测服务,均获得客户高度认可。差异化服务塑造行业作为软件检测公司,艾策科技突破传统检测模式,推出“检测+培训+咨询”一体化服务体系。通过定期发布行业安全白皮书、举办技术研讨会。基于 AI 视觉识别的自动化检测系统,助力艾策实现生产线上的零缺陷品控目标!
保留了较多信息,同时由于操作数比较随机,某种程度上又没有抓住主要矛盾,干扰了主要语义信息的提取。pe文件即可移植文件导入节中的动态链接库(dll)和应用程序接口(api)信息能大致反映软件的功能和性质,通过一个可执行程序引用的dll和api信息可以粗略的预测该程序的功能和行为。belaoued和mazouzi应用统计khi2检验分析了pe格式的恶意软件和良性软件的导入节中的dll和api信息,分析显示恶意软件和良性软件使用的dll和api信息统计上有明显的区别。后续的研究人员提出了挖掘dll和api信息的恶意软件检测方法,该类方法提取的特征语义信息丰富,但*从二进制可执行文件的导入节提取特征,忽略了整个可执行文件的大量信息。恶意软件和被***二进制可执行文件格式信息上存在一些异常,这些异常是检测恶意软件的关键。研究人员提出了基于二进制可执行文件格式结构信息的恶意软件检测方法,这类方法从二进制可执行文件的pe文件头、节头部、资源节等提取特征,基于这些特征使用机器学习分类算法处理,取得了较高的检测准确率。这类方法通常不受变形或多态等混淆技术影响,提取特征只需要对pe文件进行格式解析,无需遍历整个可执行文件,提取特征速度较快。多平台兼容性测试显示,该软件在Linux系统运行时存在兼容警告。南昌软件评测
深圳艾策信息科技:打造智慧供应链的关键技术。天津软件检测报告机构
将训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图输入深度神经网络,训练多模态深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图的特征,融合成一个单一的特征向量空间,然后将其作为深度神经网络模型的输入,训练多模态深度集成模型;(2)方案二:首先利用训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图分别训练深度神经网络模型,合并训练的三个深度神经网络模型的决策输出,并将其作为感知机的输入,训练得到**终的多模态深度集成模型;(3)方案三:采用中间融合(intermediate-fusion)方法,首先使用三个深度神经网络分别学习训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图的高等特征表示,并合并学习得到的训练样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图的高等特征表示融合成一个单一的特征向量空间,然后将其作为下一个深度神经网络的输入,训练得到多模态深度神经网络模型。步骤s3、将软件样本中的类别未知的软件样本作为测试样本。天津软件检测报告机构
深圳艾策信息科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。